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Lausanne. Switzerland 
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Abstract. We study the mechanism of electron diffusion between localized states for the 
example of a ID Anderson chain with static and dynamic disorder. The dynamic disorder is 
assumed to be periodic in time. The Schrodinger equation is integrated numerically for 
different frequencies o, to cover the range from adiabatic toanti-adiabatic coupling between 
the quasi-stationary states. Our numerical results are analysed in terms of the adiabatic 
theory and the sudden approximation. We find that--sirnilar to the hopping theory-the 
elementary diffusion processes depend strongly on the spatial overlap between the quasi- 
stationary states. 

1. Introduction 

Since the early days of the theory of disordered systems it has been recognized that the 
localization of the electron states implies the absence of electron diffusion at zero 
temperature (Anderson 1958). At finite temperatures the electrons are coupled to the 
thermal phonons, and diffusion sets in. T h i s  problem has been treated in the hopping 
theory (an early review is given by Mott and Davis (1971)) where theelectron diffusion 
is described in terms of effective transition rates between the unperturbed localized 
eigenstates at T =  0. The transition rates depend on the phonon spectrum, the tem- 
perature, as well as the energetic distance and the spatial overlap between the stationary 
unperturbed electron states. This description of the elementary diffusion processes 
becomes inadequate in the limit of high temperatures. In particular, it relies on a 
sufficiently weak electron-phonon coupling that can be treated in low-order per- 
turbation theory. Moreover, only the dynamic coupling between the localized functions 
is treated, whereas the influence of the phonons on the electron energies is neglected. 
These approximations break down for high temperatures, where kTis large with respect 
to typical phonon frequencies, and where the presence of phonons can be described in 
terms of classical temporal potential fluctuations. In this caze a more consistent way 
would be to describe the electron transition rates with respect to the quasi-stationary 
states of the system. This approach is attempted in the present paper for the case of a 
one-dimension (ID) Angerson chain with static and dynamic disorder. In such a I D  
system the electronic eigenstates are known to be localized in the presence of static 
disorder. 

0953-8984/91/172881 t 15 $03.500 1991 IOP Publishing Ltd 2881 



2882 D Berchier and K Maschke 

The influence of the temporal potential fluctuations on the electron states is treated 
in the framework of the time-dependent Schrodinger equation. This implies that our 
system is not coupled to an external heat bath, and that the time evolution of the electron 
states remains completely reversible. With this in mind it  is obvious that our approach 
does not cover the problem of dissipation but is limited to the description of the 
elementary processesof diffusion, i.e. the dynamiccoupling or 'hopping' between quasi- 
stationary eigenstates. 

Our procedure is straightforward: we place an electron initially in one of the 
eigenstates of our model Hamiltonian H(t).  Two possible kinds of limiting behaviour 
can then be distinguished: (i) the adiabatic case, in which the electron remains within a 
quasi-stationary eigenstate of the Hamiltonian H ( r ) ;  (ii) the anti-adiabatic case, where 
the electron hops from one quasi-stationary eigenstate to a neighbouring one. 

Our results show that-in agreement with intuitive arguments-the adiabatic time 
evolution becomes important for slowly varying Hamiltonians, whereas anti-adiabatic 
behaviour is approached for rapid variations. We will discuss the conditions for the 
occurrence of adiabaticor anti-adiabaticcoupling, as well as the respective contributions 
to electron diffusion. 

2. Numerical approach 

Our calculations are based on the time-dependent one-band Anderson Hamiltonian, 
which is given in terms of the Wannier functions li) 

~ ( t )  = E &,(I) / i ) ( i l  + VC (1i)(i + I /  + / i  - ~ ) ( i l ) .  (1) 

The off-diagonal matrix elements Vdescribe the coupling between nearest neighbours. 
The disorder-static and dynamic-is introduced through the diagonal elements &,(t) 
with 

E , @ )  = E: + A  sin(ot + 6,) (2) 
where the static disorder is defined through the parameters E ! ,  which are statistically 
equally distributed over the interval (- W/Z, W/2) .  The dynamic part of the disorder is 
described by the second term in equation (2). For simplicity it  is supposed to be periodic 
in time with a single frequency w .  The phases di are random within the interval (0, Zn). 

Our numerical calculations have been performed for periodic boundary conditions. 
The results presented, however, do not depend on the latter, since the periodicity 
volume is chosen much larger than the extension of the localized states. 

The evolution of the electron states with time will be described in terms of the quasi- 
stationary solutions of the Hamiltonian H(t) ,  which satisfy the Schrodinger equation 

H(OIvJn (9 = J%(~)lVn(O). (3) 

I W ~ O N  = C c , , ( t )  Ii). (4) 

The eigenvectors /qrn(f)) can be expressed in terms of the Wannier functions 

For the purposes of our later analysis we define the spatial overlap between two quasi- 
stationary functions zy. and v,,, by 
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The average density of states is given by 

The brackets (. . .)indicate time averaging, which becomes unimportant for sufficiently 
large systems, however, where the inter-level spacing is small with respect to the ampli- 
tude A of the time-dependent perturbation. The Hamiltonian (l), taken at different 
times, can then be considered to correspond to different reaIizations of a disordered 
chain of the same type. The amplitude of the remaining noise in the energies of the 
quasi-stationary states is limited by the order of magnitude of boundary effects, which 
decrease exponentially with the sample size, since the electron states are exponentially 
localized (Thouless 1977). The participation number 

measures the average number of sites that are covered by a localized state within the 
energy intenral A centred at E. 

In the above equations (6) and (7) we have used the filter function 
for /El  < A/2 

otherwise. 
The time evolution of the wavefunctions is calculated by solving the time-dependent 
Schrodinger equation 

In the following we use Rydberg atomic units, i.e. h = 1. The corresponding time unit 
is equal to 5 x 10-I'~. 

Different numerical methods can be used for the solution of equation (9). We have 
used the symmetrized finite-difference scheme 

which is very convenient and rapid. The evaluation of the right-hand side is straight- 
forward in the Wannier basis. The accuracy of the results over the considered time 
period can easily be controlled by changing the time step At. 

The above symmetrized version of the finite-difference scheme requires the knowl- 
edge of the wavefunction at two previous time steps. To initialize the procedure we 
choose a quasi-stationary solution of the Hamiltonian H(t) as the initial state and 
calculate the function after the first time step with the split-operator technique (Fleck et 
a1 1976, Feit et a1 1982)). Its formulation for the case of the Anderson Hamiltonian is 
straightforward, if one remembers that in the absence of disorder the eigenfunctions of 
equation (1) are plane waves. 

3. Numerical results 

3.1. Quasi-stationary case 

In our numerical calculations we have used the following parameters 

As we will see later, the disorder is sufficiently large to guarantee that the results 

ifi alq(r ) ) /J t  = H(t )  b?~(t)). (9) 

q(t + At) = -2iH(t)q(t) At + q(t - At) (10) 

N =  100 w = 3  v =  1 A = 0.4. 
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Figure 1. Distribution function for the diagonal 
elementsin the Anderson Hamiltonian with static 
and dynamicdisorder. 

energy 
Figure 2. Quasi-stationary case: density of states. 

I I 

enew 
Figure 3. Quasibstationary case: participation 
number. 

0.0 015 1.0 

t (P) 
Figure 4. Evolution of the quasi-stationary 
eigenvalues over the time period P. Chain length 
N = loo. 

presented are independent of the boundary conditions. The resulting effective dis- 
tribution functionp(6) forthe diagonalelementsin theHamiltonian (1) isgiven in figure 
1. It should be noted that the dynamic disorder is much weaker than the static disorder. 
The influence of the disorder on the quasi-stationary eigenstates is shown in figures 2 
and 3. The Van Hove singularities in the density of states (figure 2) near the band edges 
have nearly disappeared, and the wavefunctions are localized over only a few sites, as is 
seen from the participation numbersp(E) in figure 3. As expected. the eigenfunetions 
are less localized near the band centre where they extend over about 15 sites. 

Figure 4 shows the temporal evolution of the eigenvalues of equation (3) within a 
finite energy window. The results are given for a full time period P. We see that the 
quasi-stationary eigenvalues change in a rather complicated and uncorrelated manner. 
Close inspection shows that the lines never cross, but that they always remain separated 
by a small gap. This behaviour is a consequence of the fact that our Hamiltonian does 
not possess any symmetries that would give rise to non-accidental level crossings. In 
future we will therefore use the term 'pseudo-crossing' rather than 'crossing'. The same 
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higher resolution. 
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Figure 7. Quasi-starionary eigenfunction of state 
i = 37 beforecrossing (I = 0.8P). 

I , , . , ; , , . .  , , . . , , . , . I  
0 25 50 75 100 

oosition 
Figure 8. Quasi-stationary eigenfunction of state 
i = 38 before crossing (t = 0.W). 

general behaviour of the quasi-stationary eigenstates is found for different realizations 
cy, Si of the disorder. In the following we analyse the specific sample corresponding to 
figure 3. Our results are, however, representative for the whole ensemble of different 
realizations. This holds equally well for the later discussion of the dynamic evolution of 
the electron states in section 3.2. 

As representative examples of the behaviour of the quasi-stationary states as well as 
of the dynamic behaviour, we will examine the situation near the indicated pseudo- 
crossings in figure 4 in detail. These pseudo-crossings are shown with higher resolution 
in figures 5 and 6 .  The labels give the ordering of the N states with increasing energy. 
The behaviour of the two quasi-stationary eigenfunctions near the pseudo-crossing 
of figure 5 is analysed in figures 7 to 10. Figures 7 and 8 show the quasi-stationary 
eigenfunctions of the Hamiltonian (1) before the crossing, where the interaction can still 
be neglected. The situation at the pseudo-crossing, i.e. at the moment where the gap 
between both states has its minimum, is given in figures 9 and 10. Comparison between 
both situations shows that at the pseudo-crossing the two states that are formed in the 
basis of the two uncoupled functions of figures 7 and 8 have bonding and antibonding 
character. This is confirmed in figure 11, where we present the locally evaluated ratio 
between the functions of figures 9 and 10. We emphasize that the spatial separation of 
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Figure 9. Quasi-stationary cigenfunction of Stale 
i = 37 at crossing (I = 0.85P). 
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Figure 11. Ratio between the quasi-stationary 
eigenfunctions of figures 9 and 10. 
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Figure 10. Quasi-stationaryeigenfunction of state 
i=38atcrossing(f=O.S5P). 
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I (P) 
Figure 12. Dynamic behaviour of the functions 
i = 31 and i = 38 for o = 0,001 at the crossing of 
figure 5. The coupling is completely anti.adia- 
batic. 

the uncoupled crossing states before the crossing-as found in figures 7 and &is not 
fortuitous. It can be seen from first-order perturbation theory that pseudo-crossings will 
predominantly involve states that are localized at distant centres, since they are exposed 
to different temporal potential fluctuations. After the crossing the eigenfunctions again 
become essentially the same as before the crossing, and we regain the situation shown in 
figures7and 8. If we order the eigenstates according to their energies, the corresponding 
eigenfunctions are simply interchanged after the crossing. This behaviour is due to the 
fact that the time interval during which the crossing states interact is very small with 
respect to the period P. This means that the changes in the Hamiltonian (1) are suf- 
ficiently small to be described within first-order perturbation theory. 

3.2. Dynamic case 

The dynamic behaviour of the solutions of the time-dependent Schrodinger equation 
(9) near the level crossings of figures 5 and 6 was calculated for different frequencies w. 
For the following discussion we express the resulting wavefunctionsin termsofthe initial 
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Figure 13. Same as figure 12, but for w = O.00M. 
The coupling is predominantly adiabatic. 
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t (P) 
Figure 14. Same as figures 12 and 13, but for 
w = 0.00005.Thecouplingispredominantly anti- 
adiabatic. 

quasi-stationary functions at time t = to  before the crossing, where the levels do not yet 
interact, i.e. 

Id!)) = 2 b,(O lV,(h~)). (11) 
i 

The results for the pseudo-crossing of figure 5 are shown in figures 12 to 14, where we 
present the evolution of the expansion coefficients U,(! )  in equation (11) with time. The 
initial conditions are 

bi=37(t  = 0.82') = 1 b,=,,(r = 0.82') = 0 

i.e. the considered electron is supposed to be initially in the quasi-stationary state with 
label 37. We see that near the pseudo-crossing and for sufficiently large w (w 0.001, 
figure 12) the behaviour is fully anti-adiabatic, i.e. the electron transits from one quasi- 
stationary state to the other. The adiabatic contributions increase with decreasing w ,  as 
can be seen from figures 13 and 14. Complete adiabatic behaviour will be approached 
in the limit w+ 0. The dynamic behaviour for w values smaller than w = 0.00005 was 
not calculated, since the numerical calculations become rather time-consuming. 

The dynamical behaviour near the pseudo-crossing in figure 6 is shown in figures 15 
and 16, where it is assumed that the electron is initially in state 36. In this case the gap 
is much larger (see figure 6) than in the previous case and we find already a large adiabatic 
contribution at w = 0.001. Complete adiabatic behaviour is obtained at w = 0.00005. 
It is seen that in the limit of large w-values the dynamic evolution will become completely 
anti-adiabatic. 

Our results suggest that the electron dynamics depends strongly on the gap at the 
pseudo-crossing: for a given w the electron dynamics is anti-adiabatic for sufficiently 
small gaps and adiabatic for sufficiently large gaps. The independence of the above 
results with respect to the chain length N is tested in figures 17 and 18, where the 
calculations corresponding to figures 5 and 15 are repeated for the doubled chain length 
N = 200. Thedynamiccouplingwith the newstates, whicharerepresented bythe broken 
curves in figure 17, is completely anti-adiabatic. Thus the dynamics of figure 15 is not 
affected by the presence of the additional states. This is in agreement with our above 
findings: the gaps at the pseudo-crossings between the old and the new states are 
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Figilre 15. Dynamic behaviour of the functions 
i = 36 and i = 37 for w = 0.001 at the crossing of 
figure 6. The coupling is partly anti.adiabatic. 
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Figure 17. Evolution of the qunri-stationary 
eigenvalues near the pseudo-crossing of figure 6 
foranincreasedchainlengthN = 2QO.The broken 
curves correspond to [he additional slates with 
respect to figure 6. 
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Figure16.Sameasfigure 15. butlorw = 0.00005. 
The coupling is completely adiabatic. 
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Figure 18. D~nammouplmgof lh~  , rdt~soff ig~re 
17 for w = 0 001. Tlx cffcct.re ddfunon IS the 
same as m figure i 5 The brohen cunes rrprcrcnl 
the addmonal stater. 

negligibly small, which is a consequence of their large spatial separation and the cor- 
responding small spatial overlap of the corresponding quasi-stationary eigenfunctions, 
and thus the dynamic behaviour at w = 0.001 is already fully anti-adiabatic. The reasons 
for this behaviour will be analysed in more detail in the following. 

4. Theoretical description 

4. I .  Quasi-stationary case 

Near a pseudo-crossing the quasi-stationary problem is essentially determined by the 
interaction between the two crossing levels i and k. In the following we will therefore 
neglect any interaction with other states. We define the crossing time f l  by the condition 
that the gap &(I) - E,( [ ) \  assumes its minimum at f = tl. Because of their time-depen- 
dent separation in energy the levels interact only during a finite time interval (fa. t2 ) ,  
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where to < f l  is the time closest to  t l  where the interaction can still be neglected, and 
t2  > tI  is the time where the interaction has again become negligibly small. The times to, 
f l  and f 2  may be chosen in a symmetric way, such that 

t l  - to = I 2  - tl = 46t 6t = t 2  - to. (12) 

Starting from the solutions at t = fl we obtain for the corresponding quasi-stationary 
solutions in the time interval (to, t2) 

with the matrix elements 

We further assume that 

An eventual simultaneous change of the signs in the above two expressions does not 
influence the results of the following discussion. 

The labels i ,  k are defined such that E,([) < &(I) for all times, i.e. k = i + 1 in our 
case. With this convention we obtain for the solutions of equation (13) at the end points 
of the interaction interval ( to,  t z )  

E;(to) = ?[&(ti) + + Si(to.Ii) + s k ( h 3  t i ) ]  - I U t o  - ‘1)1 

&(fa) = E;(to) + ?[S i ( fZ , f I )  + S k ( t 2 .  f l )  - Si(t0. ( 1 )  - S k ( t 0 ,  t l) l  

E k ( t O ) = l [ E i ( f l ) + E k [ t l ) + S i ( t O . t l )  + S k ( f O r t l ) l +  IA(l0 -[I)[ 

The respective eigenfunctions are 

(17) 
IV,(tO)) = (1/W[ lVI ( t l ) )  - l V k ( t l ) ) l  

IVdtoN = (1/W[IYt(h)) + I V k ( f l N 1  

IVi(h)) = IVx(r0)) 

IVk(f2) )  = IVdtoN. 

As was already mentioned in section 2.1, the interacting quasi-stationary functions will 
in general be localized at different centres. It follows from equation (17) that the centre 
of localization of a quasi-stationary wavefunction with a given label changes during the 
crossing. This property will be responsible for the diffusion in the adiabatic regime. 
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If we express the solutions at I = t l  in the basisof the functions *,(to) and &(to). we 
get from equation (17) 

(18) 
IV)&l)) = (W2)[I*,(fo)) + Illlk(t0))l 

IWd) = (1/~2)[I*;(fd) - I V k ( t 0 ) ) l .  

This confirms our numerical result, that the solutions at f = f, are the bonding or 
antibonding combinations of the interaction-free functions at f = to. 

4.2. Adiabnric case 

For the discussion of the adiabatic case we start from the quasi-stationary solutions, 
which were discussed in the previous section. The solutions of the time-dependent 
Schrodinger equation (9) can then be written (Schiff 1955) 

Insertion of the above expression in equation (9) yields 

-- ' a ' ( ' )  - 2 G,( t )a , ( t ) .  
i # h  

The term Gkk(t)vanishesbecauseoftheparticularchoiceof thephase factorsinequation 
(19) (Schiff 1955). The coupling coefficients Gk,(1) are given by 

with 

(a f f ( l ) /d t )h ;  (lllk(I)IJH(f)/aflVI,(t)). (22) 

According to equation (20) the coupling coefficients Gki(f)  determine the non-adia- 
baticity of the evolution of state k with time. In the following we estimate their orders 
of magnitude. With equations ( 2 )  and (4) we obtain 

and therefore 

I (J f f ( t ) /d t ) , i l  SAW 2 lcL(f)\lCin(t)l =AUOhi(t) (24) 
n 

where we have used the expression (5) for the overlap between the quasi-stationary 
states. The upper limit for the strengths of the coupling coefficients (equation (21)) 
becomes 

IGki(l)l =Z A ~ O ~ i ( r ) / l E k ( t )  - E,(t)l. (25) 

It follows that the dynamic coupling between the quasi-stationary states decreases with 
their distance in energy. In the case of large dynamic disorder, where the variations of 
E,(r) over a period are important, non-adiabatic behaviour will therefore only occur 
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near a pseudo-crossing. The coupling parameter Gki reaches its maximum at t = t l ,  
where Oki(tl) = 1. We have 

lGki(ti)l sAw/lEk(ti) - Ed(fi)l. (26) 
In agreement with our numerical results we find that the adiabatic behaviour is 
approached in the limit of small 'adiabatic parameters' Aw and/or large gaps. 

We will now discuss the behaviour of the coupling coefficients in somewhat more 
detail. Defining the times to, t I  and tz as before and using equation (18), we obtain for 
the gap at f = t l  

Ei(t1) - Ek(t1) = (uli(rr)iH(tl)iuli(tI)) - ( ~ k ( t l ) I H ( t l ) / ~ k ( f l ) )  

= ( u l i ( f O ) / ~ ( ~ l ) I u l k ( ~ O ) )  + cc. (27) 

~ ( t , )  = ~ ( t , )  + A  E [sin(wt, + 6,) - sin(wto + a,)] ln)(nl (28) 

With equations (1) and (2) we can write 

n 

and with equations (5) and (27) 

lEi(tl) - &(fd Icf(to)l Ick.(t~)l Isin(wtl + 6,) - sin(wt0 + 
n 

G 4AOki(t,). (29) 
This relates theminimum value of thegap to the overlap between the unperturbed quasi- 
stationary functions before the pseudo-crossing. The overlap between distant localized 
states decreases exponentially with their relative distance. Therefore we can conclude 
from equations (26) and (29) that for given Aw quasi-stationary states beyond a critical 
distance may be coupled dynamically, i.e. the time evolution will possibly be non- 
adiabatic. This behaviour will be confirmed in the following chapter. In order to avoid 
any confusion, we emphasize that the dynamic coupling is described with respect to the 
quasi-stationary states. It follows from equation (17) and the discussion in section 4.1 
that electron diffusion is correlated with adiabatic behaviour. We will see in the next 
section that strong dynamic coupling leaves the initial electron state unchanged over the 
level pseudo-crossing, and thus does not contribute to the diffusion. 

4.3. Ami-adiabatic cme 

As in the previous chapter, we consider again a pair of quasi-stationary eigenstates near 
a pseudo-crossing. The times to, t ,  and t2 are defined as before. For the following analysis 
it is convenient to express the solution of the time-dependent Schradinger equation in 
the time interval (to, t z )  in terms of the quasi-stationary functions at t = to 

9?(t) = E bdOVi(t0) (30) 
i=i .k  

which has already been used for the discussion of the numerical results. We assume the 
same initial conditions as before, i.e. ~ ( 1 0 )  = $ k ( t o ) ,  or 

bk(fo) = 1 b,(to) = 0. (31) '' 

For short interaction times 6t = t2 - to it is convenient to start from the 'sudden approxi- 
mation' (Messiah 1964), which gives v(tz) = v k ( t o ) ,  or 

bk(t2) = 1 bi(I2) = 0 (32) 
i.e. the initialstateremainsunchangedand we havenocontribution toelectron diffusion. 
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The diffusion is related to the term b,(t2), which determines the transition rate 
between the initial quasi-stationary state vk(to) and the crossing state viro). The first- 
order correction for 6&) is 

b r ( f Z )  = -i [" exp{i[E,(t') - Ek(t')]t']Wik(t') dt' (33) 
' t o  

with 

we(0 = (v,(b)lH(r) - N h ) l Q k ( O  

= A  E cL(to)ck.(tO)[sin(wr + 6.) - sin(oi,, + 6 , ~ .  (34) 
n 

For the last expression we have made use of equations (4) and (28). Assuming that 
the interaction interval 6I = t2 - Io is small compared with the period 6' of the time- 
dependent perturbation, we obtain after development of sin(wt + 6.) at I = r,, 

w , k ( r )  = Aw(t  - io) Z c:(ro)ckn(rn) cos(wio + 6,) (35) 

and with equation (5) 

lw;k(t)I s A w ( f -  f o ) o i k ( f n ) .  (36) 

Insertion in equation (33) yields 

Ib,(r2)l <AwO,k(fo)  !'I (t' - to )  df' = fAoOik(to) 61*. (37) 
In 

The interaction time 6f can be estimated from the quasi-stationary Schrodingerequation 
(13), which describes the interaction between the levels i and k. Starting from equation 
(14) we obtain in the same way as for equations (34) to (36) 

A ( ~ . I ] )  = ~ w ( t - r , ) Z c ~ ( r ~ ) c , . ( ~ , ) ~ o ~ ( ~ t ~  + 6"). (38) 
n 

Remembering that O,,(t1) = 1 we get for the upper bound at f = f 2  

b . W 2 , f , ) l ~ U w 6 r ,  (39) 

It follows from equation (13) that the interaction increases with the ratio between 
A(t2,  t l )  and the minimum gap at I = f I .  We may therefore characterize the interaction 
strength by 

K =  A(r2,~J/ I&(h)-  &(tdl. (40) 

6t = 2K/Ek( t1 )  - Ei(r , ) l /Aw.  (41) 

From equations (39) and (40) we obtain for the interaction time 

It is evident that the minimum gap at f = f l  is related to the overlap between the states i 
and k. According to equation (29) it disappears for vanishing overlap Oik(to). It is 
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therefore reasonable to assume that both are proportional, with a constant of pro- 
portionality depending on the disorder. This leads to 

dr = COix(tn)/Ao. (42) 

bi(h)I D l o i ~ ( t o ) l ~ / A ~  (43) 

Together with equation (37) we obtain for the first-order correction bi(t2) 

where D is a constant that depends on the strength of the static as well as the dynamic 
disorder. Equation (43) shows that the adiabatic corrections become rapidly less impor- 
tant for increasing spatial distance between the crossing states-in agreement with the 
resultsof the previoussection. Thus, for agiven adiabatic parameter Aw, states that are 
separated by more than a critical distance will merely contribute to the diffusion. This 
point will be discussed in more detail in the following section. 

For the above discussion we have assumed that the interaction time dt is small with 
respect to the time period P ,  i.e. we have excluded the case of quasi-stationary states 
with a flat crossing behaviour. This assumption will be valid for most crossings, in 
particular if the considered states are far apart such that their overlap is negligible (see 
equation (42)). However, the case of flat crossing can also be treated in a quite similar 
manner. In this case we start again from equation (34), which leads to 

w , m  uOik( t0 ) .  (44) 

bi (P)  S 2APOik(to) = (4nA/w)OCk(to) .  (45) 

The interaction takes place throughout the full period P. We obtain with equation (33) 

Comparison with equation (43) shows that as before the adiabatic correction increases 
with l / w  and is limited by the spatial overlap Oik(tO). The dependence on the overlap is, 
however, weaker than in equation (43). The inverse dependence on the amplitude in 
equations (43) and (45) is due to the fact that in the limit of short interaction times dr is 
proportional to 1/A (equation (41)), whereas it  becomes independent of A in the case 
of flat crossings. 

The behaviour of the dynamic coupling for Aw- 0 cannot be predicted in an 
unambiguous manner. From the above estimate, equation (43), it cannot be excluded 
that the coupling remains anti-adiabatic at a given pseudo-crossing, and thus does not 
contribute to the diffusion. Such a situation is, however, not found in our numerical 
calculations. 

4.4. Size dependence of the diffusion 

In the preceding section we have found that, for a given adiabatic parameter Aw, 
spatially distant states will not contribute to the electron diffusion. The argumentation 
is, however, not completely satisfactory, because up to now we have neglected the fact 
that the number of pseudo-crossings increases with the sample size. Therefore, we have 
still to control whether the above estimate remains true in the limit of infinite chains. To 
this end we consider a chain of length N o  and an initial state k ,  which is localized near 
the centre of the chain. N o  is supposed to be large compared with the localization lengths 
of the electron states. We now ask for the change of the dynamic behaviour of the initial 
quasi-stationary state k ,  if we add a site at each side of the considered chain. For the 
following estimation we will assume that the original N o  states of the unperturbed chain 
remain practically unchanged. The new chain then contains just two additional states i ,  
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with i = No + 1, No + 2 Their distance with respect to the centre will increase as 
No/2 + 1. Under these assumptions we can calculate an upper bound for the first-order 
correction x to the anti-adiabatic dynamics ('adiabatic correction'), which results from 
the presence of the two additional states. Since the overlap between the initial state k 
and the states i is negligible, it is adequate to start from equation (43), which is valid for 
steep crossings. We obtain 

(46) 

D Berchier and K Maschke 

x(No + 2)  = 21b;(12)IZ G2D210ik( t0)16/A2~2 
where the overlap term can be approximated by 

Here h is proportional to the minimum of the reciprocal localization lengths, which 
describe the exponential decrease of the wavefunctions at large distances. Here we have 
supposed that the considered quasi-stationary states k and i are suficiently close in 
energy to cross under the influence of the time-dependent perturbation, as was required 
for the derivation of equation (43). However, equation (46) still holds if the energy 
difference between statesiand kremainslargeforall times. In thiscase thestatesremain 
uncoupled, and x (N0  + 2) = 0. 

If we add in the same manner more and more sites on both sides of the chain we get 
finally for an infinite chain 

The above expression shows that even in the limit N-r m the contributions of the 
additional states remain negligible, provided that No is already sufficiently large. Even 
if flat crossing behaviour is not very likely for far distant states, we note that also in this 
case a similar result is found starting from equation (45) instead of equation (43). 

5. Conclusions 

We have investigated the microscopic mechanism of electron diffusion in a 1D chain with 
static and dynamic disorder. The dynamic behaviour of the electron states has been 
described in the basis of the quasi-stationary eigenfunctions of the time-dependent 
model Hamiltonian. We have shown that the elementary electronic diffusion processes 
correspond to adiabaticcoupling of crossing quasi-stationarystates. For agiven adiabatic 
parameter A w ,  the diffusion processes are limited to a finite range in real space. This 
range increases with decreasing A w .  

As was mentioned in the introduction, OUI present study can he understood as a first 
step of an extension of the hopping theory to high temperatures, In order to obtain the 
temperature dependence of the high-temperature hopping rates, our transition rates 
(which correspond to a given amplitude of the potential fluctuations) must still be 
weighted by a Boltzmann factor, which accounts for the statistical distribution of the 
amplitudes. We find that, even in our high-temperature model, the electron diffusion is 
strongly limited by the spatial overlaps between the involved electronic functions- 
similar to the hopping model for low temperatures. There is, however, an important 
difference: the hopping theory is expressed in terms of the eigenstates of the stationary 
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Hamiltonian at T = 0; in our high-temperature limit these must be replaced by the quasi- 
stationary eigenstates of the time-dependent Hamiltonian. 
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